Luminal CCK-releasing factor stimulates CCK release from human intestinal endocrine and STC-1 cells.

نویسندگان

  • Yu Wang
  • Vera Prpic
  • Gary M Green
  • Joseph R Reeve
  • Rodger A Liddle
چکیده

CCK is secreted into the blood from intestinal endocrine cells following ingestion of a meal. Recently, it has been demonstrated that the ability of certain foods to stimulate CCK release is mediated by endogenously produced CCK-releasing factors. A newly discovered luminal CCK-releasing factor (LCRF) is secreted into the intestine, where it stimulates CCK secretion. However, the mechanism whereby LCRF affects intestinal epithelial cells is unknown. The current study was designed to determine whether LCRF has a direct effect on CCK cells to stimulate hormone secretion. In dispersed human intestinal mucosal cells, LCRF (5-200 nM) significantly stimulated CCK release in a concentration-dependent manner. This stimulatory effect was absent in calcium-free media and was inhibited by the L-type calcium-channel blockers diltiazem and nifedipine. To examine direct cellular effects of LCRF on CCK cells, further studies were conducted in the CCK-containing enteroendocrine cell line STC-1. As in native cells, LCRF significantly stimulated CCK release from STC-1 cells in a calcium-dependent manner. In cells loaded with a calcium-sensitive dye, LCRF stimulation produced a rapid increase in intracellular calcium. To examine the electrophysiological basis for this stimulation, whole cell recordings were made from STC-1 cells. Whole cell calcium currents were identified under basal conditions; moreover, calcium-channel activity was increased by LCRF. These studies demonstrate that 1) LCRF has a direct effect on human intestinal cells to stimulate CCK secretion, 2) stimulated hormone release is calcium dependent, and 3) LCRF activates calcium currents in CCK cells, which leads to CCK secretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensing of amino acids by the gut-expressed taste receptor T1R1-T1R3 stimulates CCK secretion.

CCK is secreted by endocrine cells of the proximal intestine in response to dietary components, including amino acids. CCK plays a variety of roles in digestive processes, including inhibition of food intake, consistent with a role in satiety. In the lingual epithelium, the sensing of a broad spectrum of L-amino acids is accomplished by the heteromeric amino acid (umami) taste receptor (T1R1-T1...

متن کامل

Effect of five taste ligands on the release of CCK from an enteroendocrine cell line, STC-1.

Here, we investigated which taste ligand induces the CCK (cholecystokinin) release from intestinal STC-1 cells. We first developed a new assay to measure the release of CCK. The expression vector for CCK type A receptor (CCKAR) was permanently introduced into HEK293T cells and a cell line was established (CCKAR/HEK). Then, STC-1 cells were treated with taste ligands and the incubated buffer of ...

متن کامل

Diazepam-binding inhibitor33-50 elicits Ca2+ oscillation and CCK secretion in STC-1 cells via L-type Ca2+ channels.

We recently isolated and characterized 86-amino acid CCK-releasing peptide from porcine intestinal mucosa. The sequence of this peptide is identical to that of porcine diazepam-binding inhibitor (DBI). Intraduodenal administration of DBI stimulates the CCK release and elicits pancreatic secretion in rats. In this study we utilized a murine tumor cell line (STC-1 cells) that contains CCK to exam...

متن کامل

GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells.

In the intestinal lumen, protein hydrolysate increases the transcription and release of cholecystokinin (CCK) from enteroendocrine cells of the duodenal-jejunal mucosa. Our recent discovery that a G protein-coupled receptor, GPR93, is activated by dietary protein hydrolysate causing induced intracellular calcium-mediated signaling events in intestinal epithelial cells raises a possibility that ...

متن کامل

GPR93 Activation by Protein Hydrolysate Induces CCK Transcription and Secretion in STC-1 Cells By

In the intestinal lumen, protein hydrolysate increases the transcription and release of cholecystokinin (CCK) from enteroendocrine cells of the duodenal-jejunal mucosa. Our recent discovery that a G protein coupled receptor (GPCR), GPR93, is activated by dietary protein hydrolysate causing induced intracellular calcium mediated signaling events in intestinal epithelial cells, raises a possibili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 282 1  شماره 

صفحات  -

تاریخ انتشار 2002